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INTRODUCTION
Constellation mapped read technology is a novel approach leveraging on-flow-cell library preparation that utilizes 
proximity information from neighboring nanowells to generate long-range genomic insights from standard SBS 
sequencing.
Constellation mapped reads identify complex structural rearrangements by counting proximal clusters between any 
pair of genomic regions, termed ‘colocation’. 

HOW IT WORKS

Constellation mapped read technology uses flow
cell-bound transposomes to eliminate library prep by
capturing and tagmenting long DNA molecules as
they flow across the flow cell surface. All
downstream clustering and SBS steps are
maintained. Due to on-flow-cell tagmentation,
nearby clusters contain reads from the same original
input molecule, enabling recovery of long-range
information (Figure 1, see poster 569 438).
High-resolution visual representations of genome
structure, termed colocation maps, can then be
generated by extracting information about reads from
proximal clusters between any pair of genomic
regions. These maps divide the
genome into bins and count reads in neighboring clusters for each possible pair of genomic bins. Large numbers of
reads from neighboring clusters occur almost exclusively when those bins are in close genomic proximity.
In regions with no structural variants, bins that are nearby in the reference genome are nearby in the sample and
appear as a diagonal line in a colocation plot. In regions with structural variants, nearby bins in the reference
genome are no longer nearby in the sample and exhibit off-diagonal signals (Figure 2). Image recognition methods
can subsequently be trained on a combination of simulated and real data to automatically classify the
rearrangement type and provide additional information about the event.

SIMULATION ADDRESSES TRUTH SET CONSTRAINTS
Figure 4 shows several outputs from the detection pipeline. The figure illustrates simulated events (including a
balanced inversion) as well as real examples – a heterozygous deletion from the HG002 truth set, and an
inversion. The white box indicates ground truth while the black box shows the output from the AI detection pipeline
– in these examples, they overlap closely, indicating close concordance with truth. The network outputs event type,
position, dimension and confidence score. The object detector can identify balanced events including inversions
and inter-and intra-chromosome translocations.

After identification, large structural rearrangements and anomalous regions are highlighted on the colocation map
for easy visual analysis. We detect structural variants in difficult-to-map regions, across the full spectrum of size
and position, from 10kbp up to chromosomal scale events. Detected SVs can be refined by read information,
allowing base-pair breakpoint resolution.
The pipeline will be integrated into DRAGEN enabling full genome analysis in reasonable time-scales, with
standard VCF output format.

Deep learning object detection algorithms applied to the colocation matrices are used to classify large structural
variants. The backbone network uses convolutional layers to detect event signatures - for example inversions
generate ‘butterfly’ shapes off-diagonal with a location that identifies the event breakpoint. Output heads classify SV
event type, position and size based on the detected motifs and relative orientation (Figure 3). The approach
includes an anomaly detector algorithm, identifying regions in the genome with anomalous link information that
cannot easily be classified – including complex balanced rearrangements.

COMPLEX REARRANGEMENTS

FUTURE DIRECTIONS

Colocation matrices provide distinctive signals for complex rearrangements that can have significant clinical impact,
including translocations, ring chromosomes, and others. Colocation matrices generated from Coriell samples with
well-characterized genomic anomalies exhibit signals for these complex rearrangements that would be
undetectable with standard SBS in figures 5 – 7.

Karyotyping, gene panels, microarray analysis, DNA sequencing, and specialized assays have all been traditionally
employed to detect balanced and unbalanced structural rearrangements in the genome. These assays have
several limitations, including variable robustness for different classes of rearrangements, targeted assays, long
runtimes, and needing multiple tests to fully characterize a sample’s genome structure. Whole genome sequencing
using constellation mapped reads with colocation analysis can detect all major structural variant types, including
insertions, deletions, inversions, translocations, and other, more complex events, in a single, unbiased assay.
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Figure 2. Simplified diagrams, simulated colocation matrices, and examples from HG002 / NA24385 are shown for various structural rearrangements.  The 
leftmost diagram of each subplot shows the colocation count for each bin-pair, with the boxes underneath the matrix representing the genome bin ordering 
indicated by the matrix.  The center colocation plot shows a simulated homozygous example of a specified structural rearrangement, and the rightmost plot shows 
an example of the rearrangement in HG002 / NA24385 that is either heterozygous or homozygous. The inversion is not from HG002.  A: No SV; B: Heterozygous 
insertion; C: Homozygous deletion; D: Heterozygous tandem duplication; E: Heterozygous inversion.

IMAGE RECOGNITION-BASED SV CLASSIFICATION

Figure 1. Double stranded DNA flows onto the flow cell.  DNA is 
captured on the surface and tagmented. Clusters that originate from the 
same DNA template molecule are nearby on the flow cell surface.
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Figure 4. Colocation maps and object detector outputs a) multiple events (hom-del and inv) b) het-del c) het-ins
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Figure 3. A diagram of the image recognition module, including inputs and outputs, that can be trained to classify structural 
variants from colocation data.

Figure 5. A colocation matrix from an 
individual with severe hemophilia A, 
caused by an inversion in intron 22 of F8.  
The inversion is characterized by the 
butterfly pattern in the matrix, indicating 
that the first exon and BRCC3 have been 
inverted.  Individuals with severe 
hemophilia A suffer from spontaneous 
bleeding episodes due to minimal clotting 
activity.

Figure 6. A colocation matrix from an 
individual with derivative 22 syndrome, also 
known as Emanuel syndrome, indicating 
increased colocation signal between 11q 
and 22q due to an unbalanced 
translocation of the two chromosomes.  
Individuals with derivative 22 syndrome 
suffer from hypotonia, developmental delay, 
and other congenital abnormalities.

Figure 7. A colocation matrix from an 
individual with ring chromosome 17, 
indicated by increased colocation signal 
between the beginning and end of the 
chromosome in the colocation matrix.  
Symptoms in individuals with ring 17 may 
vary from lissencephaly and severe 
intellectual disability to short stature, 
microcephaly, etc.
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